Имитации алмаза синтетическими минералами. Синтезированные камни не встречающиеся в природе Гранат на основе скандия иттрия и алюминия

Химическая формула ИАГ: : . Этот лазер работает па четырехуровневой схеме. Первый уровень, называемый основным, соответствует min возможному значению энергии, которую могут иметь ионы.

Число ионов, имеющих min энергию, составляет большинство. Число ионов, находящихся на более высоких уровнях энергии, заметно меньше и оно подчиняется равновесному распределению Больцмана. В лазерах на гранате с неодимом нижние рабочие уровни заселены слабо, и поэтому основная доля мощности накачки расходуется не на создание инверсной населенности (), а на преодоление потерь в резонаторе и на полезное выходное излучение. При этом для возникновения генерации достаточно перевести на уровень 3 лишь малую часть ионов, находящихся на основном уровне. Это выгодно отличает этот вид лазеров от лазеров, работающих по трехуровневой схеме. В последних нижним рабочим уровнем является основной уровень, и для создания инверсной населенности (), требуется перевести на метастабильный уровень 2 не менее половины ионов с основного уровня, а с учетом потерь в резонаторе и полезного излучения больше половины. Поэтому в трехуровневых лазерах (например, на рубине) мощность накачки расходуется непроизводительно и их КПД оказывается существенно ниже. Состояние среды, когда N3>N2, называется инверсией населенности энергетических уровней. Иттрий-алюминиевый гранат с примесью неодима является уникальным материалом, обладающим хорошей теплопроводностью, большой твёрдостью и удовлетворительными оптическими свойствами. Подходящ для генерации в режиме синхронизации мод. Большое время жизни верхнего лазерного уровня (t = 0,23 мс) позволяет ИАГ быть весьма хорошим для работы в режиме модулированной добротности. ИАГ-лазеры могут работать как в непрерывном, так и в импульсном режиме. В обоих случаях обычно используются линейные лампы в схемах с одноэллипсным осветителем, с близким расположением лампы и кристалла или с многоэллипсным осветителем. Для работы в импульсном и непрерывном режимах применяются соответственно ксеноновые лампы среднего давления (500- 1500 мм рт. ст.) и криптоновые лампы высокого давления (4- 6 атм). Размеры стержней обычно такие же, как и у рубинового лазера. Выходные параметры ИАГ -лазера оказываются следующими: в непрерывном многомодовом режиме выходная мощность до 200 Вт; в импульсном лазере с большой скоростью повторения импульсов (50 Гц) средняя выходная мощность порядка 500 Вт; в режиме модулированной добротности максимальная выходная мощность до 50 МВт; в режиме синхронизации мод длительность импульса до 20 пс. Как в импульсном, так и в непрерывном режиме дифференциальный КПД составляет около 1-3%.

24. Полупроводниковые лазеры. Принцип действия, типы полупроводниковых лазеров. Спектральные и генерационные характеристики.

Полупроводниковые лазеры (ППЛ) испускают излучение в диапазоне длин волн 0,32-32 мкм. В качестве активной среды применяют полупроводниковые кристаллы. В них используются оптические переходы с участием свободных носителей тока в кристаллах, т.е. с участием состояний в электронных зонах.

Полупроводниковые лазеры обладают следующими особенностями:

Очень малыми размерами излучающей области,

Весьма высоким КПД (50-60%),

Малыми мощностями.

В сравнении с твердотельными и газовыми полупроводниковые лазеры обладают:

Меньшей когерентностью,

Направленностью (1-6°) и

Монохроматичностью луча (примерно 5 нм).

По способу накачки лазеры полупроводниковые делятся на:

Инжекционные,

С накачкой пробоем в электрическом поле,

С накачкой пучком быстрых электронов,

С оптической накачкой

Работают полупроводниковые лазеры преимущественно в импульсном режиме и при низких температурах, что вызвано необходимостью обеспечить теплоотвод, а также и тем, что при понижении температуры генерация возникает при меньших плотностях тока. В качестве активной среды наиболее широко применяют арсенид галлия с p-n-переходом, генерирующим излучение с длиной волны равной 0,84 мкм, и сплав арсенида и фосфида галлия. Возбуждение p-n-перехода осуществляют путем инжекции электронов.

По своим качествам, структуре и принципам работы полупроводниковые лазеры отличаются от других лазеров. Энергетические уровни, относящиеся к лазерному переходу, определяются всей кристаллической решеткой. Эти состояния не являются дискретными, а слиты в энергетические зоны, представляющие собой
группы энергетических состояний, расположенные очень тесно. Для лазера представляют интерес две энергетические зоны: валентная и проводимости.

Валентная зона является наиболее высоким состоянием, заполненным электронами. Зона проводимости лежит выше и отделена областью энергии, называемой запрещенной зоной, в которой нет никаких электронных состояний. При поглощении энергии электроны переходят из валентной зоны в зону проводимости. В валентной зоне остаются дырки. Аналогично электрон может перейти из зоны проводимости и рекомбинировать с дыркой в валентной зоне. При рекомбинации разность энергии испускается в виде излучения. Электроны инжектируются со стороны n-типа и рекомбинируют в области перехода. В результате этого возникает ток. Такие лазеры называются инжекционными. При прохождении тока должно создаваться достаточное количество дырок и электронов, так чтобы излучение, генерируемое при их рекомбинации, превышало потери, которые связаны с дифракционным выходом света из активной области, пропусканием света на границе перехода и поглощением света свободными носителями в области перехода. Поэтому существует пороговое значение плотности тока, необходимое для работы лазера.

Полупроводниковые лазеры не обладают малой расходимостью пучка, так как их излучение испускается через апертуру, ограниченную малой шириной перехода. Дифракция на узкой полосе перехода приводит к выходу излучения в более широком угле, чем для лазеров других типов. Поэтому излучение, например, лазера на арсениде галлия имеет вид луча эллиптического сечения с углом рассеяния на уровне 0.5, равным нескольким градусам в направлении, параллельном переходу, и большими размерами в направлении, перпендикулярном переходу.

Алюмо-Иттриевый гранат (АИГ) это оптический материал пригодный для использования в УФ и ИК оптике . Изделия из YAG можно применять в качестве оптических элементов в широкой области спектра от 250-5000 нм. Механические и химические свойства YAG близки к сапфиру, однако YAG не обладает двулучепреломлением и его обработка несколько проще,чем обработка сапфира. YAG не имеет линий поглощения в области 2 – 3мкм, где обычно стекла имеют тенденцию высокого поглощения из за сильных связей молекул воды. Благодаря высоким показателям прочности, порога разрушения, показателя преломления и теплопроводности YAG может быть использован при высоких температурах и в высокомощных лазерах.

Мы используем для нашей оптики высококачественные кристаллы, выращеные по методу Чохральского и горизонтальным методом по выбору заказчика. Наша фирма осуществляет лазерную полировку YAG, изготавливая светопроводы, призмы и зеркала.

Оптические свойства

Область пропускания, мкм 0.21 to 5.3
Показатель преломления, при 1.064 мкм 1.82
Потери при отражении, % для двух поверхностей 1.064 мкм 16.7%
Термооптический фактор (dT), 633 нм 7.3 * 10 -6 * K -1

Физические свойства

Плотность, г/см3(20°C) 4.56
Растворимость Нерастворим в воде
Тип материала Синтетический монокристалл
Кристаллическая структура кубическая
Точка плавления °C 1940
Теплопроводность W * cm -1 * °K -1 0.14
Температурный коэффициент линейного расширения 1/°C 7.8 x 10 -6
Удельная теплоёмкость J /(kg * K ) at 0 °C 590
Диэлектрическая постоянная 11.7
Модуль Юнга (E ), GPa 300
Коэффициенты упругости C 11 = 333
C 12 = 111
C 44 = 115
предел упругости MPa 280
Твёрдость по Моосу ~8,5


Иттрий алюминиевый гранат легированный неодимом (Y 3 A 15 O 12:Nd 3+ )

Алюмо-Иттриевый гранат легированный неодимом( Y 3 A 15 O 12:Nd 3+) - лазерный кристалл, который широко используется в промышленных, медицинских и научных целях. Его основными преимуществами являются: низкий порог генерации, высокий КПД, низкие потери на 1.064 µm , а также высокое оптическое качество, хорошая теплопроводность и устойчивость к перепадам температур, стабильные химические и механические свойства, что позволяет применять Nd :YAG во всех типах твердотельных лазеров.

Свойства
Химическая формула Nd 3+ :Y 3 Al 5 O 12
Кристаллическая структура Кубическая
Концентрация лигатуры,ат.% 0.5 - 1.2
Постоянная решетки, A 12.01
Плотность г/см3 4.56
Точка плавления, °C 1950
Диэлектрическая постоянная 11.7
Твердость по Моссу 8.5
7.8 x 10 -6 x °K -1 , <111>
8.2 x 10 -6 x °K -1 , <100>
Теплопроводность 25°C, W x cm -1 x °K -1 0.14
Коэффицент потерь при 1064 nm, cm -1 0.003
Коэффицент преломления, при 1 µm 1.82

Спецификация лазерных стержней Nd:YAG

Материал Иттрий алюминиевый гранат легированный неодимом
Уровень легирования 0.5 - 2.3 %
Разброс легирования +/- 0.1 %
Ориентация <111>
Допуск ориентации +/-5º
Допуск по диаметру +/- 0.05 мм
Допуск по длине +/- 0.5 мм илипо требованию
Паралельность
Перпендикулярность
Искажение волнового фронта Lambda/8на дюйм на 633 нм
Плоскостность Lambda/10 на 633 nm или по требованию заказчика
Точки-царапины 10-5 MIL – 13830B
Боковая поверхность Шлифованные или полированные
Световая аппертура 90% центральная часть
Фаски <0.15 мм x 45º
Покрытия AR покрытия R<0.2% с поверхности на1064 nm или по требованию заказчика

Дополнительно АРД-ОПТИКС предлогает услуги по ремонту
(переполировка и нанесение покрытий) лазерных элементов заказчика

Иттрий алюминиевый гранат легированный эрбием (Er:Y 3 Al 5 O 12 или Er:YAG)

Иттрий алюминиевый гранат, легированный эрбием ( Er :Y 3 Al 5 O 12 или Er :YAG ) - лазерный кристалл, который имеет широкие преимущества при использовании на длине волны 2.94 µ. Er :YAG имеет высокое оптическое качество, высокий КПД , хорошую теплопроводность, стабильные химические и механические свойства. Er :YAG накачивается в широкой области 600 - 800 нм. Все эти свойства делают Er :YAG превосходным материалом для стоматологических и других медицинских лазеров.

Основные свойства
Химическая формула Er:Y 3 Al 5 O 12
Кристаллическая структура Cubic
Концентрация лигатуры, ат.% 1 - 50%
Постоянная решетки, A 12.00
Плотность,г/см3 5.35
Точка плавления, ºC 1970
Диэлектрическая постоянная 11.7
Твердость по Моссу 8.5
.Коэффицент термического расширения 7.7 x 10-6 x ºK-1, <111> 8.2 x 10-6 x ºK-1, <100>
Теплопроводность при 25ºC, W x cm-1 x ºK-1 0.12
Коэффицен потерь на 1064 нм, cm-1 0.003
Длина волны излучения, нм 2940
Коэффицент преломления, на 2940 нм 1.79

Спецификация лазерных стержней Er:YAG

Материал Иттрий алюминиевый гранат легированный эрбием
Уровень легирования 1 - 50 %
Ориентация <111>
Допуск на ориентацию +/-5º
Допуск на диаметр +/- 0.05 мм
Допуск на длинуe +/- 0.5 мм или по требованию заказчика
Паралельность
Перпендикулярность
Искажение волнового фронта Lambda/8 на дуйм на 633 нм
Плоскостностьs Lambda/10 at 633нм или по требованию заказчика
Царапины-точки 10-5
Бокавая поверхность Шлифованные или полированные
Световая аппертура 90%
Фаски <0.15 mm x 45º
Покрытия AR покрытия с R<0.25 % на 2940 нм или по требованию заказчика

Дополнительно АРД-ОПТИКС предлогает услуги по ремонту
(переполировка и нанесение покрытий) лазерных элементов заказчика

Иттрий алюминиевый гранат легированный иттербием (Yb: Y 3 Al 5 O 12 или Yb:YAG)

Алюм-иттриевый гранат, легированный иттербием(Yb: Y 3 Al 5 O 12 или Yb:YAG ) является одним из многообещающих лазерных активных материалов и более удобным для диодной накачки по сравнению с традиционными Nd гранатами. Он может генерировать на длине волны 1,03µ при накачке 940 нм. Основные преимущества Yb :YAG : широкая полоса поглощения, высокая эффективность и превовсодная эммисия. Лазерный материал Yb :YAG широко используется в промышленных лазерах для резки и сварки металлов. Этот кристалл также применяется в электронике, оптике и в лазерных технологиях.

Основные свойства
Химическая формула Yb 3+ :Y 3 Al 5 O 12
Кристаллическая структура кубическая
Концентрация легирования,ат.% 5 - 30 %
Постоянная решетки, A 12.01
Плотность г/см3 4.56
Точка плавления, °C 1970
Твердость по Моссу 8.5
Коэффицент термического расширения 7.8 x 10 -6 x °K -1 , <111>
Теплопроводность25°C, W x cm -1 x °K -1 0.14
Коэффицент потерь на 1064 нм, см -1 0.003
Длина волны генерации, нм 1030
Коэффицент преломления, на 1 µ 1.82

Спецификация лазерных стержней Yb:YAG

Материал Иттрий алюминиевый гранат легированный иттербием
Уровень легироваия 5 - 30 %
Ориентация <100>
Допуск на ориентацию +/-5º
Допуск на диаметр +/- 0.05 мм
Допуск на длину +/- 0.5 мм или по требванию заказчика
Параллельность
Перпендикулярность
Искажение волнового фронта Lambda/8 на дуйм на 633 нм
Плоскостность Lambda/10 на 633 нм или по требованию заказчика
Точки-царапины 10-5
Боковая поверхность Шлифованные или полированные
Световая аппертура 90% центральной области
Фаски <0.15 мм x 45º
Покрытия AR покрытия с R<0.25% с поверхности на требуемой длине волны

Дополнительно АРД-ОПТИКС предлогает услуги по ремонту
(переполировка и нанесение покрытий) лазерных элементов заказчика

В последние годы иттрий-алюминиевый гранат (ИАГ) вызывает неослабный интерес исследователей во всем мире, так как является.одним из самых перспективных материалов для квантовой электроники и других разделов современной техники. Физико-механические свойства ИАГ позволяют использовать его и как сырье для ювелирной промышленности.

Гранат можно выращивать различными методами . В СССР производство ИАГ для ювелирной промышленности основано на использовании метода горизонтальной направленной кристаллизации . В качестве исходных компонентов для синтеза ИАГ по реакции

3Y 2 O 3 + 5Al 2 O 3 → 2Y 3 Al 5 O 12

применяют окись иттрия марки «ХЧ» и корундовую керамику. Сплавление шихты и кристаллизация происходят в вакууме в аппаратах «Сапфир-1м» или СГВК. Вакуумная технология, особенно удобная для выращивания бесцветных кристаллов, позволяет также получать кристаллы ИАГ розового, сиреневого и зеленого цветов, окрашенные окислами эрбия, неодима, хрома и ванадия. При этом из-за интенсивного испарения окрашивающих добавок в шихту вводится количество хромофора, в два-три раза превышающее его содержание в кристалле.

Используемая технология обладает рядом существенных недостатков. При кристаллизации в вакууме через разогретую камеру в течение всего процесса прокачивается небольшое, но конечное количество воздуха. Кислород воздуха окисляет вольфрамовый нагреватель и теплозащитные молибденовые экраны, что значительно сокращает срок их использования. Кроме этого, окисная пленка снижает отражательную способность экранов и приводит к увеличению энергозатрат. В результате химических реакций между окислами ванадия и молибдена с одной стороны и кристаллизуемым материалом с другой растущий кристалл покрываетс металлическим налетом. Нерационально и использование в качестве компонента шихты довольно дорогой (30 - 35 руб. за 1 кг) корундовой керамики, сильно загрязненной окислами железа, в то время как в ювелирной промышленности существует проблема использования возвратных отходов корунда ограночного производства, цена на которые составляет 5 руб. за 1 кг.

Во ВНИИювелирпроме создана технология перекристаллизации этих отходов , но их применение для выращивания ИАГ значительно эффективнее.

Использование возвратных отходов в качестве компонентов гранатовой шихты основано на том, что отходы корунда представляют собой монокристаллическую окись алюминия с добавками Сг 2 О 3 и V 2 O 3 . Окислы хрома и ванадия, окрашивающие кристаллы корунда, играют роль хромофоров и в гранате, изоморфно входя в его структуру. Возвратные отходы корунда, выращенные методом Вернейля, выгодно отличаются от корундовой керамики низкой концентрацией «вредных» примесей. Так, содержание Fе 2 O 3 в корундовой керамике достигает 0,5%. Высокое содержание окисла железа, взаимодействующего с молибденом, приводит к протечкам контейнеров в процессе кристаллизации. Концентрация железа в возвратных отходах не превышает 0,05% .

Во ВНИИювелирпроме разработана технология выращивания ИАГ в газовой среде с использованием возвратных отходов корунда. По этой технологии высушенная окись иттрия, возвратные отходы и, если необходимо, добавки хромофорных окислов в стехиометрическом соотношении загружаются в специальный контейнер для сплавления. При этом для получения однородного слитка шихту загружают слоями: на дно контейнера - возвратные отходы корунда, затем слой порошка V 2 О 3 , возвратные отходы и т. д. Как при сплавлении, так и при кристаллизации, вакуумирование аппарата производится с помощью форвакуумного насоса до 10 ~2 торр. После этого в аппарат запускают аргоно-водородную смесь (95% Аг осч и 5% H 2 техн), создающую давление 0,5 атм. Простые расчеты показывают, что более высокая степень вакуумирования не имеет смысла. Так, уже при вакуумировании до 10 -3 торр количество кислорода, вносимое с аргоном, будет на порядок выше оставшегося в аппарате количества кислорода.

Таким образом, с момента запуска в холодный аппарат газовой смеси в камере постоянно поддерживается избыточное давление, т. е. проблема «натекания» перестает существовать.

Следует отметить, что процесс выращивания ИАГ разрабатывался с учетом конкретных условий существующего производства, так что переход с «вакуумной» технологии на «газовую», связанную с использованием водорода, может быть осуществлен в тех же условиях (противопожарная категория помещения) с соблюдением всех требований техники безопасности.

Созданная технология дает очевидные преимущества по сравнению с существующей технологией:

1. На два-три часа сокращается время подготовки аппарата к работе.

2. В четыре-пять раз увеличивается срок службы нагревательного элемента и теплозащитных экранов - самых дефицитных деталей кристаллизационной камеры.

3. Отсутствие пленки окислов на теплозащитных экранах увеличивает их отражательную способность. Это позволяет вести процесс кристаллизации при более низком напряжении на нагревателе.

4. Существенное преимущество технологии, основанной на использовании возвратных отходов корунда, - возможность получения кристаллов различных цветов, в том числе изумрудно-зеленого, причем процент выхода годного сырья значительно больше, чем при выращивании в вакууме.

Кроме изумрудно-зеленых кристаллов, разработанная технология позволяет получать ИАГ и других цветов желто-зеленой гаммы, представляющих интерес для ювелирной промышленности. В табл. 1. приведены соответствующие составы шихты.

Таблица 1

Оптимальный состав шихты и цвет выращенных кристаллов ИАГ

№ п п Состав шихты Цвет
Y 2 O 3 , вес.% Al 2 O 3 (вид отходов), вес.% Цветообразующая добавка
Вещество Вес.%
1 57,1 Корунд с V 2 О 3 и Сг 2 О 3
42,9
- - Бледно-зеленовато-желтый, близкий к хризолиту
2 57,1 Корунд с Сг 2 О 3
42,9
- - Желтый, близкий к цитрину
3 57,1 Корунд с V 2 О 3 и Сг 2 О 3
42,9
V 2 O 5 0,40 Зеленый, близкий к изумруду
4 57,1 То же V 2 O 3 0,30 То же
5 57,1 Корунд с Сг 2 О 3
42,9
V 2 O 5 0,40 То же
6 57,1 То же Cr 2 O 3 0,30 Темно-зеленый

Как следует из данных табл. 1, кристаллы ИАГ хризолитового и цитринового цветов получаются без добавки окислов - хромофоров, а за счет окрашивающих веществ, содержащихся в возвратных отходах корунда (Сг 2 O 3 - 0,3-0,7 вес.% и V 2 O 3 - 0,2-0,З вес-.%) .

Указанное в табл. 1 содержание цветообразующих добавок рассчитано в процентах от суммарного количества окиси иттрия и возвратных отходов. Эти добавки являются сверхстехиометрическими, т. е. они не компенсированы дополнительным количеством V 2 O 3 . Такой состав шихты позволяет получить не только нужный цвет, но и улучшить качество кристалла (уменьшается растрескивание).

По данным табл. 1 видно, что для получения кристаллов изумрудного цвета в шихту можно добавлять как V 2 O 3 , так и Al 2 O 3 . Это объясняется тем, что пятивалентный ванадий легко восста-навливается до трехвалентного состояния в присутствии водорода. При введении Сг 2 О 3
(кристалл № 6) в свете лампы накаливания наблюдается красная флуоресценция, что приводит к очевидному различию этих кристаллов и изумрудов.

Близость остальных кристаллов по цвету к хризолиту, цитрину и изумруду подтверждается не только методом экспертной оценки, но и объективными расчетами цветовых характеристик сравнивае¬мых материалов. Цветовые координаты рассчитывались по стандартной методике на основании данных о спектрах пропускания ИАГ и природных минералов.

Сравнение спектров зеленого «изумрудного» граната и природного изумруда (кривые 1 и 4 на рис.1) свидетельствуют в целом об их подобии в значительном интервале длин волн. Достаточно большое сходство обнаруживают также цветовые особен¬ности хризолита и ИАГ цвета хризолита (кривые 2, 5).

Рассчитанные координаты в цветовом треугольнике (рис. 2) определяют цветовой тон и чистоту цвета. Как видно по данным рис, 2, координаты граната изумрудного цвета (точка 1) и природного изумруда (точка 4) довольно близки, причем цветовое сходство больше, чем в случае природного и синтетического изумруда (точка 8). Значительное сходство обнаруживается и при сравнении цветовых координат граната цвета хризолита (точка 2) и природного хризолита (точка 5). То же можно сказать о цитрине природном (точка 6) и «цитриновом» гранате (точка 3), цвета которых ближе между собой, чем цвета природного и синтетического (точка 7) цитрина.


В табл. 1 приведены количества хромофоров, добавляемых в шихту. Естественно, в процессе кристаллизации концентрация хромофоров меняется. Поэтому интересно было определить содержание Сг и V в монокристалле, цвет которого удовлетворял бы требованиям, предъявляемым к ювелирному сырью. С этой целью проводился спектральный эмиссионный анализ на Сг и V кристалла № 3, позволивший оценить распределение хромофоров по длине монокристалла. Ошибка при определении составляла 9 и 11% для Сг и V соответственно (рис. 3). Концентрация ванадия в шихте не превышала 0,5% (0,1% в возвратных отходах корунда }

Понравилась статья? Поделиться с друзьями: